
Swift 5.0

Who is this guy?

Who is this guy?

Richard L Zarth III

Software Engineer and iOS Developer

Website: rlziii.com

Email: rlziii@icloud.com

http://www.rlziii.com
mailto:rlziii@icloud.com

Who is this guy?

Started programming in 2016 with iOS 9 and Swift 2.2

UCF

Major: Computer Science

Minor: Secure Computing and Networks

What We'll Cover

Swift Evolution

ABI Stability

Changes in Swift 5.0

Getting Started with Swift 5.0

Swift Evolution

Swift Evolution

Swift started development in 2010

Swift was revealed at WWDC 2014

Chris Lattner was the project lead

Ted Kremenek became the project lead in early 2017

Open Source

Swift became open source in late 2015

Swift development lives on GitHub

Swift Evolution repo keeps track of proposals

Swift Forums available for discussions and pre-proposals

Proposal Process

Swift Core Team has the final say regarding proposals

A formal proposal is submitted

A review time is allocated and revisions made as necessary

Active Review → Accepted → Implemented

Commonly Rejected Changes

Replace brackets with Python-style indentation

Replace logical operators with keywords (e.g. && → AND)

Use garbage collection instead of automatic reference counting

Rewrite Swift compiler in Swift

What We'll Cover

Swift Evolution

ABI Stability

Changes in Swift 5.0

Getting Started with Swift 5.0

What We'll Cover

Swift Evolution

ABI Stability

Changes in Swift 5.0

Getting Started with Swift 5.0

ABI Stability

ABI Stability

Application Binary Interface

Primary focus of Swift 5.0

Source compatibility across future Swift versions

Binary and runtime compatibility

Source Compatibility

Newer compiler can compile older Swift code

Reduce migration pains

Removes "version lock"

Maintain single code base across multiple Swift versions

Binary & Runtime Compatibility

Distribute frameworks in binary form across Swift versions

Code to link together and interoperate at a runtime level

Enables module format stability

Enables ABI stability

Module Format Stability

Communicates source-level information about a framework

Compiler's representation of the public interface of a framework

Shared library provides compiled implementation to the runtime

This will not be finalized until a Swift 5.x release

What is ABI?

The API of binary Swift programs

Binary entities must agree on many low-level details

Must conform to be linked together and executed

ABI is per-platform (architecture and operating system)

What is ABI Stability?

Lock down ABI to enable future binary conformance

Tends to persist for the rest of the platform's lifetime

Decisions about the ABI tend to have long-term ramifications

New and orthogonal changes are called ABI-additive changes

What We'll Cover

Swift Evolution

ABI Stability

Changes in Swift 5.0

Getting Started with Swift 5.0

What We'll Cover

Swift Evolution

ABI Stability

Changes in Swift 5.0

Getting Started with Swift 5.0

Changes in Swift 5.0

Changes in Swift 5.0

Strong source compatibility with Swift 4.2

Drops support for Swift 3 compatibility

Final branching happened on November 16, 2018

22 proposals implemented in Swift 5.0

Handling Future Enum Cases

SE-0192 Handling Future Enum Cases

Switch statements must be exhaustive

However, what if a case is added to an API at a later time?

Without a default case this would break code

Handling Future Enum Cases

@unknown default accommodates this problem

Display warning if switch is not exhaustive without default case

Can only have @unknown attribute on a default case

Cannot have both default and @unknown default cases

Handling Future Enum Cases

Enums can be declared as @_frozen

These enums will never get new cases

e.g. Optional, FloatingPointSign

Not for general use by application developers

enum UserType {
 case regular
 case admin
}

func doSomething(userType: UserType) {
 switch userType {
 case .regular:
 print("This is a regular user.")
 case .admin:
 print("This is an admin.")
}

enum UserType {
 case regular
 case admin
}

func doSomething(userType: UserType) {
 switch userType {
 case .regular:
 print("This is a regular user.")
 case .admin:
 print("This is an admin.")
 default:
 print("User has unknown type.")
 }
}

enum UserType {
 case regular
 case admin
}

func doSomething(userType: UserType) {
 switch userType {
 case .regular:
 print("This is a regular user.")
 case .admin:
 print("This is an admin.")
 @unknown default:
 print("User has unknown type.")
 }
}

enum UserType {
 case regular
 case admin
 case moderator
}

func doSomething(userType: UserType) {
 switch userType {
 case .regular:
 print("This is a regular user.")
 case .admin:
 print("This is an admin.")
 @unknown default:
 print("User has unknown type.")
 }
}

enum UserType {
 case regular
 case admin
 case moderator
}

func doSomething(userType: UserType) {
 switch userType {
 case .regular:
 print("This is a regular user.")
 case .admin:
 print("This is an admin.")
 case .moderator:
 print("This is a moderator.")
 @unknown default:
 print("User has unknown type.")
 }
}

Enhancing String Literal Delimiters

SE-0200 Enhancing String Literals Delimiters to Support Raw Text

Adding a # symbol before the first " symbol will change the delimiter

The string terminator " now becomes "#

The escape delimiter \ now becomes \#

Enhancing String Literal Delimiters

Can be used in multiline strings as well using #""" and """#

Can be especially useful when writing regular expressions

Adding multiple # symbols will further change the delimiters

Using ## makes the string terminator "## and escape delimiter \##

print("Is \"swifty\" even a word?")

print(#"Is "swifty" even a word?"#)

let kirbyDance = """
\\(^_^)/
<(^_^)>
/(^_^)\\
"""

let kirbyDance = #"""
\(^_^)/
<(^_^)>
/(^_^)\
"""#

Unicode and Character Properties

Two proposals:

SE-0211 Add Unicode Properties to Unicode.Scalar

SE-0221 Character Properties

Adds many convenience properties for Unicode and Character

Unicode.Scalar.Properties

Boolean properties (e.g. isAlphabetic, isMath, isEmoji)

Case mappings (e.g. lowercaseMapping, uppercaseMapping)

Identification and classification (e.g. age, name)

Numerics (e.g. numericType, numericValue)

let chick = Unicode.Scalar("🐥")
print(chick.properties.isEmoji) // true

let a = Unicode.Scalar("a")
print(a.properties.uppercaseMapping) // A
print(a.properties.name!) // LATIN SMALL LETTER A
print(a.properties.age!) // (major: 1, minor: 1)

let one = Unicode.Scalar("1")
print(one.properties.numericType!) // decimal
print(one.properties.numericValue!) // 1.0

Character Properties

Boolean properties (e.g. isASCII, isCurrencySymbol, isLetter)

Case methods (e.g. lowercased(), uppercased())

ASCII properties (e.g. asciiValue)

Numeric properties (e.g. hexDigitValue, wholeNumberValue)

let a = Character("a")
print(a.isASCII) // true
print(a.asciiValue!) // 97
print(a.uppercased()) // A

let yen = Character("¥")
print(yen.isCurrencySymbol) // true

let yon = Character("四")

print(yon.wholeNumberValue!) // 4

Dynamically "Callable" Types

Followup to the @dynamicMemberLookup attribute (Swift 4.2)

Adds @dynamicCallable attribute

Allows for elegant interoperation with dynamic languages

e.g. Python, JavaScript, Pearl, Ruby

Dynamically "Callable" Types

This proposal is purely syntactic sugar

Written by Chris Lattner and Dan Zheng

Both work on TensorFlow

Particularly useful for server-side Swift and machine learning tools

// Swift 4.2
let file = Python.open.call(with: filename)

// Swift 5.0
let file = Python.open(filename)

// Import DogModule.Dog as Dog.
let Dog = Python.import.call(with: "DogModule.Dog")

// Python: dog = Dog("Brianna")
let dog = Dog.call(with: "Brianna")

// Python: dog.add_trick("Roll over")
dog.add_trick.call(with: "Roll over")

// Python: dog2 = Dog("Kaylee").add_trick("snore")
let dog2 = Dog.call(with: "Kaylee").add_trick.call(with: "snore")

// Import DogModule.Dog as Dog.
let Dog = Python.import("DogModule.Dog")

// Python: dog = Dog("Brianna")
let dog = Dog("Brianna")

// Python: dog.add_trick("Roll over")
dog.add_trick("Roll over")

// Python: dog2 = Dog("Kaylee").add_trick("snore")
let dog2 = Dog("Kaylee").add_trick("snore")

Dictionary.compactMapValue

Adds a combined filter and map operation to dictionaries

Corresponds to Sequence.compactMap()

Keys stay intact while values are transformed

Results are unwrapped and nil values are discarded

let releaseYears = [
 "iPhone": "2007",
 "iPhone 5": "2012",
 "iPhone 6 Plus": "2014",
 "iPhone 9": "Right around the corner",
 "iPhone XS Max": "2018",
 "iPhone X Double-S Max Plus Deluxe Extreme": "TBD"
]

let currentReleases = releaseYears.compactMapValues { Int($0) }

let releaseYears = [
 "iPhone": "2007",
 "iPhone 5": "2012",
 "iPhone 6 Plus": "2014",
 "iPhone 9": "Right around the corner",
 "iPhone XS Max": "2018",
 "iPhone X Double-S Max Plus Deluxe Extreme": "TBD"
]

let currentReleases = releaseYears.compactMapValues { Int($0) }

let screenSizes = [
 "original": 3.5,
 "tall": 4,
 "hd": 4.7,
 "plus": 5.5,
 "x": 5.8,
 "xr": 6.1,
 "max": 6.5,
 "xdsmpde": nil
]

let currentSizes = screenSizes.compactMapValues { $0 }

let screenSizes = [
 "original": 3.5,
 "tall": 4,
 "hd": 4.7,
 "plus": 5.5,
 "x": 5.8,
 "xr": 6.1,
 "max": 6.5,
 "xdsmpde": nil
]

let currentSizes = screenSizes.compactMapValues { $0 }

Sequence.count(where:)

Counts the number of elements in a Sequence that pass some test

Combines what would normally be two steps: filter then count

Less wasteful because there is no need for an intermediate array

This proposal solves a common problem that programmers face

let result = [-3, -2, -1, 0, 1, 2, 3].filter({ $0 > 0 }).count

let result = [-3, -2, -1, 0, 1, 2, 3].count { $0 > 0 }

BinaryInteger.isMultiple(of:)

BinaryInteger is the base protocol for Int, Int16, UInt32, etc.

Adds a simple way of checking multiplicity

Limits the need for remainder operator in many cases

Primary reason for proposal was readability and new programmers

if (x % 2 == 0) {
 // Do something for even numbers only.
}

if x.isMultiple(of: 2) {
 // Do something for even numbers only.
}

// Fizz-Buzzin' every day.
for n in 1...100 {
 switch (n.isMultiple(of: 3), n.isMultiple(of: 5)) {
 case (true, false):
 print("Fizz")
 case (false, true):
 print("Buzz")
 case (true, true):
 print("FizzBuzz")
 default:
 print(n)
 }
}

ExpressibleByStringInterpolation

This protocol was deprecated in Swift 3.0 because of inefficiency

New method is considerably more flexible and efficient

Can be used to customize string interpolation results

More powerful in many cases than CustomStringConvertable

struct Color {
 var name: String
 var tint: String
}

extension String.StringInterpolation {
 mutating func appendInterpolation(_ a: Color) {
 appendInterpolation("The color is \(a.tint) \(a.name)")
 }
}

let color = Color(name: "blue", tint: "dark")

// Print: Color(name: "blue", tint: "dark")
print("Print: \(color)")

// Much more expressive: The color is dark blue.
print("Much more expressive: \(color)")

let attuqoltuae = "Quite definitely \(42, style: .spellOut)."

// Quite definitely forty-two.
print(attuqoltuae)

let attuqoltuae = "Quite definitely \(42, style: .scientific)."

// Quite definitely 4.2E1.
print(attuqoltuae)

POP QUIZ

POP QUIZ

struct Doughnut {
 // 🍩🍩🍩
}

func optionalDoughnut() throws -> Doughnut? {
 var doughnut: Doughnut?
 // Some code goes here.
 return doughnut
}

let whatTypeAmI = try? optionalDoughnut()

struct Doughnut {
 // 🍩🍩🍩
}

func optionalDoughnut() throws -> Doughnut? {
 var doughnut: Doughnut?
 // Some code goes here.
 return doughnut
}

let whatTypeAmI = try? optionalDoughnut() // Doughnut??

Flatten Nested 'try?' Optionals

Nested optionals are valid in Swift, but usually not intended

Several popular workarounds for this strange behavior

e.g. if let x = (try? somethingAsAny()) as? Something

Does not turn optionals into non-optionals

Flatten Nested 'try?' Optionals

Nested optionals are valid in Swift, but usually not intended

Several popular workarounds for this strange behavior

e.g. if let x = (try? somethingAsAny()) as? Something

Does not turn optionals into non-optionals

🤔

Add Result to Standard Library

Many individual framework and application implementations

Offers a pragmatic compromise between present and future use

Most helpful when dealing with asynchronous APIs

More simple and clean than the current method

public enum Result<Value, Error: Swift.Error> {
 case success(Value)
 case failure(Error)
}

URLSession.shared.dataTask(with: url) { (data, response, error) in
 guard error != nil else {
 self.handleError(error!)
 }

 guard let data = data, let response = response else {
 return
 }

 handleResponse(response, data: data)
}

URLSession.shared.dataTask(with: url) { result in
 switch result {
 case .success(let response):
 handleResponse(response.0, data: response.1)
 case .failure(let error):
 handleError(error)
 }
}

What Wasn't Covered?

What Wasn't Covered?

SE-0213 Literal initialization via coercion

SE-0214 Renaming the DictionaryLiteral type to KeyValuePairs

SE-0215 Conform Never to Equatable and Hashable

SE-0219 Package Manager Dependency Mirroring

What Wasn't Covered?

SE-0224 Support 'less than' operator in compilation conditions

SE-0227 Identity key path

SE-0229 SIMD Vectors

SE-0232 Remove Some Collection Customization Points

What Wasn't Covered?

SE-0233 Make Numeric Refine new AdditiveArithmetic Protocol

SE-0234 Remove Sequence.SubSequence

SE-0237 Introduce withContiguousStorageIfAvailable methods

SE-0239 Add Codable conformance to Range types (after Swift 5.0)

What We'll Cover

Swift Evolution

ABI Stability

Changes in Swift 5.0

Getting Started with Swift 5.0

What We'll Cover

Swift Evolution

ABI Stability

Changes in Swift 5.0

Getting Started with Swift 5.0

Getting Started with Swift 5.0

Getting Started with Swift 5.0

Why try Swift 5.0 now?

Get a head start with new development features

Ensure that your current projects will not break

Just for FUN!

Let's try this live...

